Cummins Next Heavy Duty Natural Gas

Agenda

- Destination Zero
- Fuel Agnostic Platform
- Natural Gas Overview
- Current Product Portfolio
- 2024 X15N
- Heavy Duty R&D

WHAT IS DESTINATION ZERO?

REACHING DESTINATION ZERO

Public

- 4

CUMMINS FUEL-AGNOSTIC PLATFORM

NEW TECHNOLOGY APPROACH

New fuel-agnostic engine platforms are derived from a common base engine, meaning they have a high degree of parts commonality.

Each engine version will operate using a different, single fuel.

Above the head gasket will have different components for different fuel types.

Below the head gasket of each engine will largely have similar components.

Cummins

0

X15 GLOBAL PLATFORM: FUEL AGNOSTIC

Reliable | Durable | Scale | Common

8

BENEFITS TO OEMS AND END USERS

- **Parts commonality** Increased benefits for both truck OEMs and end users, including similar engine footprints, diagnostics and service intervals
- Easier integration of fuel types A variety of fuel types can be integrated across the same truck chassis
- Technician training and service location retooling can cover multiple fuel types — Will lower total cost of ownership for the end user

Win with Natural Gas

NATURAL GAS VALUE DRIVERS

Environmental & Sustainability Benefits

- Lower GHG and NOx levels at the tailpipe
- Potential to reach sub-zero well to wheel emissions with Renewable Natural Gas (RNG)
- Start reducing total transportation footprint today

Economic Benefits

- Low cost of fuel
- Can provide competitive advantage to help you win business
- Much lower incremental vehicle cost than BEV / Fuel Cell

Operational Benefits

- Least disruptive and most mature alternative fuel technology (for all applications and routes)
- Only alternative fuel that can supply required range and power for long-haul/heavy-duty vehicles
- High level of parts commonality with diesel

CUMMINS AND NATURAL GAS POWER

Cummins has been building natural gas engines since 1986

Cummins is the only manufacturer in the U.S. developing and producing heavy and medium-duty commercial renewable natural gas engines

Cummins natural gas engines operate on renewable or fossil natural gas stored on-board as **compressed natural gas (CNG) or liquid natural gas (LNG)**

Most fleets operating natural gas engines do so for 8-12 years of service

98% of all class 8 tractors with ISX12N engines are day cabs

Majority of private fleets switching to RNG power are advancing a corporate environmental sustainability plan to reduce corporate carbon or GHG liabilities

CUMMINS NATURAL GAS ENGINES

THE CUMMINS X15N — **A NATURAL GAS ENGINE THAT** BRINGS IT ALL TOGETHER

X15N HIGHLIGHTS

- The industry's first big-bore natural gas powertrain
- Designed for linehaul heavy duty applications
- Capable of meeting stringent CARB24/27 and future EPA NOx regulations
- Up to 500 hp /1,850 lb-ft of torque
- Compact 15 Liter targeting ISX12N and 13L chassis installations
- ~500 lbs. lighter than diesel 15L engine
- Can utilize RNG for carbon-negative well to wheel emissions
- Maintenance-free passive aftertreatment system
- Manufactured in Jamestown, NY along with other heavy-duty Cummins engines

X15N Product Introduction

XISN

Design and deliverables to be confirmed through pending and final verification

- Industry-first & market-defining *Big Bore Natural Gas* Powertrain
- Capable to meet stringent CARB24/27 and future EPA NOx regulations
- Compact 15 Liter Targeting fit in ISX12N & 13L chassis installations, 500 lbs lighter than current 15L diesels
- ✤ Up to a 10% Fuel Economy/GHG improvement over ISX12N
- 12L-15L Diesel matching ratings up to 500hp & 1850lb-ft of torque
- Compact passive TWC aftertreatment system
- Integrated with Industry HD transmissions Endurant and Allison
- Incorporates Cummins Powertrain Features & Strategies
- Potential for Carbon Negative Solution with RNG

Base Engine

- EPA and CARB
- Rear Geartrain
- Advanced combustion management

Air Handling

- Dual Wastegate Turbocharging
- Advanced Cooled EGR

Lube and Cooling

- Closed Crankcase Breather
- Elimination of Coolant Filter

Exhaust System

- Single unit, maintenance free & fluid free, chassis mounted Three-Way Passive Catalyst

Vehicle Integration

- Compact 15Ldesign and reduced weight
- Integrated with Endurant (& Allison) transmissions
- Full powertrain feature suite

Fuel System

- Next generation fuel system
- Integrated with vehicle fuel system partners

Electronics System

- CM2380 ECM
- Next generation connectivity solutions

Cummins 16

X15N VALUE DRIVERS

Enhanced Reliability (More Uptime)

- 50+ years of natural gas knowledge and know-how integrated into uptime design
- Reliability-enabling digital features
- Cummins service & support network

Lower Total Cost of Operation

- Up to 10% fuel economy improvements compared to current ISX12N
- Increased oil drain intervals
- Increased spark plug life
- Lower weight than ISX12N enables increased payload

Better Performance

600

- Increased power/torque
- Up to 500 hp/1850 lb-ft
- Broader peak torque speed band
- Improved transient response
- Increased braking power
- Endurant Transmission
 Integration

The Cummins X15N Next Generation – **Heavy Duty Natural Gas** R&D

High Efficiency, Ultra Low Emissions Heavy Duty Natural Gas Engine

- Funded by NGV Consortium consisting of DOE, CEC & SCAQMD (2019 2023).
- 80% Complete.
- 15L Final Demo Engine.
- Advanced combustion, air-handling and fuel system development on 2024 X15N base engine.
- Objective: Efficiency improvements while maintaining Low NOx capability on a diesel like torque curve.

Engine Testing

- Prototype 15L multicylinder demo engine built, installed and commissioned in performance dyno test cell at Cummins Technical Center, Columbus, IN.
- Hardware robustness validated with over 300hrs engine runtime.
- Steady state calibrations developed for stable engine operation.
- Advanced technology hardware selection complete.
- Demonstrated target torque curve capability.
- Achieved program efficiency targets.
- Achieved improved efficiency across fuel map.
- Upcoming :
 - Efficiency and Emissions Demo Q2'23
 - Final Report Q3'23

DoE Program: DE-EE0009460

Dynamic Skip Fire (DSF) w/ HD NG Engine

- Funded by DOE in partnership with Tula technologies (2021 – 2025).
- 30% Complete.

- Barriers being addressed:
 - Current HD NG engines Brake Specific CO2 (BSCO2) increase at lower average duty cycle powers.
- Relevance
 - Class 7-8 vocational trucks have considerable idle time and low average loads.
 - Demonstration of a path to <400 g/hp-hr CO2 emissions on vocational and tractor certification cycles.
- Objective : Design and develop advanced air-handling technology for HD NG engine to demonstrate improvement in BSCO2 emissions on low loaded cycles while maintaining capability to meet Low NOx emissions.

Milestones

Budget Period 1 (05/01/21-02/28/23)

System Design and Analysis

Project Kick-off

- Overhead Design Complete
- ✓ Initial Engine Control Architecture Defined
- A
- Advanced Hardware Design Complete

Go/No-Go: Advanced Hardware and Control System Architecture Defined

Budget Period 2 (03/01/23-02/29/24)

Hardware Manufacturing, Rig Validation and Dyno Testing

First spin of rig hardware
 complete

Software bench test complete

ln In

Initial engine map completed

Advanced Hardware

- Robustness Demonstrated with Bench Test
- Go/No-Go: Engine
- Operation Demonstrated with new technology

Budget Period 3 (03/01/24-02/28/25)

Vehicle Integration and Final Demonstration

Drive Cycle Testing Complete

Chassis Dyno Testing
 Complete

H2 Blending in NG Engines

- Hydrogen injection into natural gas pipeline is an industry evolving practice driven by carbon footprint reduction.
- Up to 20% being considered.
- But there are challenges : Knock, Spark Plug Life, Pre-ignition.
- What is Cummins doing :
 - Performance analysis to establish boundary conditions and CFD to estimate impact to combustion.
 - Testing at UCR on production MD L9N with 5% H2.
 - Plans to conduct testing on 15L HD NG engine.

Figure 3. Methane Number of Natural Gas - Hydrogen Mixtures

Conclusion

- Cummins is investing in next generation Natural Gas internal combustion engine R&D as a bridge to achieving zero emissions powertrain solutions.
- Technology advancements for fuel efficient, reliable, cleaner and cheaper engines than what is available today.
- Demonstrated diesel like torque curve capability with BTE improvements compared to production ISX12N on a 15L HD NG engine (opportunities for further improvement).
- Cummins R&D is also looking into solutions for H2 blending in NG.

X15N MARKET OVERVIEW & APPLICATIONS

